Содержание страницы:
Теория струн допускает рождение чёрных дыр микроскопических размеров от столкновения двух частиц (например, протонов). При ударе возможно их сильное сжатие, достаточное для появления микроскопической черной дыры, но время жизни её ничтожно и опасности она не представляет. Большой взрыв вполне мог способствовать появлению этих объектов, потому что тогда плотность материи была очень высокой. Но небольшие дыры наверняка испарились, теряя массу посредством излучений и потоков частиц. До наших времён могли дожить лишь тела, массы которых были больше 1012 кг. Нынешний размер таких объектов сопоставим с протоном или нейтроном.
Горизонт событий
Чёрные дыры создают невероятные гравитационные поля, поэтому пространство и времени возле них сильно искажается.
В ней плотность и тяготение принимают бесконечные значения. Но всё это верно для обычного, макромира. Микромир ещё не имеет своей теории гравитации.
Что внутри чёрной дыры
Установлено, что внутри черной дыры — сингулярность. У нас пока нет инструментов для изучения этих объектов, зато есть пара увлекательных видеороликов :)
Интересные факты
- Время возле чёрных дыр протекает медленнее, нежели вдали от них. Если наблюдать за предметом, брошенным в этот объект, то движение предмета будет замедляться, а видимость его ослабляться. В конце он остановится и станет невидимым. Но если наблюдатель сам прыгнет туда, то мгновенно упадёт в центр дыры, а гравитационные силы разорвут его моментально. А увидит он всю жизнь вселенной, от рождения до смерти.
- Интересное свойство — после преодоления горизонта событий: чем сильнее вы будете сопротивляться гравитации чёрной дыры и стремиться улететь подальше, тем быстрее вы упадёте в неё. Тяжело себе такое представить, согласитесь…
- Неважно, что из себя представляло тело до сжатия, после этого процесса можно исследовать лишь три его параметра. Это электрический заряд, полная масса и момент импульса. Невозможно установить исходные параметры чёрной дыры – её форму, цвет, состав вещества.
- Всё, попадающее за горизонт событий, обязательно падает к центру, где находится сингулярность, имеющая бесконечную плотность. Это место, где уже не работают законы физики и классические концепции пространства и времени.
- Стивен Хоккинг сумел открыть испарения чёрных дыр. Крупные дыры будут испаряться очень долго — десятки и сотни миллиардов лет, а микроскопические — за доли секунды. Гипотетическое испарение, или испускание фотонов называют излучением Хокинга. Этот процесс имеет чисто теоретическое обоснование. Согласно теории, черные дыры образовавшиеся при рождении Вселенной и имеющие массы 1012кг, к нашему времени должны полностью испариться. Поскольку интенсивность испарения возрастает с уменьшением размера, то этот процесс должен закончиться взрывом. Пока такие взрывы астрономами не наблюдались.
- Классическая теория гравитации предполагает, что черную дыру невозможно ни уменьшить, ни уничтожить. Она может только увеличиваться. Из этого следует, что информация, попавшая внутрь недоступна для наружного наблюдателя.
- Никто не знает наверняка, что мы увидим, приблизившись к чёрной дыре. Но вполне возможно, что она не такая и чёрная. Вещество, летящее на её поверхность, разгоняется и разогревается, и, перед тем, как нырнуть за горизонт событий, должно светиться. Поэтому перед нами будет не круглый тёмный вырез в пространстве, а сияющий ореол, немного похожий на солнце в момент его полного затмения.
Сверхмассивные чёрные дыры
Все галактики имеют в своём центре чёрные дыры, включая и нашу. Такие выводы сделаны на основании наблюдений движения межзвёздного газа и близких звезд. Расчёты показывают, что объекты в центре галактики должны иметь громадные массы при небольших размерах. Получается, что центр любой галактики и есть чёрная дыра. И массы их – миллионы и миллиарды масс Солнца. Все наблюдаемые звёздные системы со свойствами чёрных дыр имеют массы 4 – 16 солнечных.
Столкновение чёрных дыр
Если две чёрные дыры столкнутся, то должно произойти их слияние. Это событие будет сопровождаться излучением гравитационных волн. По величине такая энергия составит несколько процентов от суммарной массы дыр. И существование гравитационных волн было доказано в обсерватории LIGOLIGO - лазерно-интерферометрическая гравитационно-волновая обсерватория.Главная задача LIGO — экспериментальное обнаружение гравитационных волн космического происхождения. Эти волны впервые были предсказаны в общей теории относительности Эйнштейна в 1916 году, когда ещё не существовало технологий, необходимых для их обнаружения.
Многие сигналы — колебания звезд, еще какие-то — переводят в звуковую форму. Вот так жутковато выглядит звук слияния двух чёрных дыр:
Как их обнаружить
Обнаружить чёрную дыру возможно, если она входит в состав двойной системы, Например, в двойной системе одна из звезд взрывается, превращаясь в сверхновую. На оставшуюся звезду будет действовать гравитация соседки, следовательно вещество из звезды будет перетекать в чёрную дыру (она буквально будет «пожирать» звезду).
Вещество со звезды закрутится в спираль вокруг черной дыры, произойдёт его сильное уплотнение и разогрев. Нагрев будет продолжаться до возникновения волнового излучения в рентгеновском диапазоне, по характеру которого и можно понять параметры объекта. Также, черная дыра, пролетая возле звезды, отклоняет ее с обычной траектории своей колоссальной гравитацией, тем самым выявляя себя. Чёрные дыры, не имеющие напарника-звезду, также существуют в теоретических расчётах.
Как изучают
Изучают черные дыры в основном при помощи математического моделирования и физики. Если теоретические выкладки согласуются с наблюдениями и не противоречат доказанным фактам, гипотеза превращается в общепризнанную теорию. Вот видео где это подробно рассмотрено: